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SIGNIFCANCE AND XXPlAXN ION

Gravity waves propagating on the interface between two fluids of

different densities are observed in laboratory experiments and in oceano-

graphic studies. Internal waves propagating along thermoclines in the ocean

and along the interface between salt water end fresh water in estuaries are

but two examples. This report is part of an ongoing theoretical and numerical

study of this phenomenon.

Here we do a numerical study of the interfacial periodic gravity waves

progressing along the interface between two unbounded fluids of different

densities. Assuming two-dimensional potential flow in each fluid, the

resulting problem is reduced to a set of algebraic equations by discretisation

and solved by Newton's method together with variation of wave parameters.

Calculations of Vanden-Broeck and others are extended to show that progression

along a one parameter family of waves toward a limiting configuration in

accompanied by oscillatory behavior in the wave characteristics.

2be responsibility for the wording and views expressed in this descriptive

sumery lies with NW, and ndt with the authors of this report.
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on TOM LZNZ!TZH CZOWzu3T&ZOW OF

ZNTUFWACIAL GRAVITY hAVWS

l.M.L. Turner and J.-K Venden-Broeck

1. introduction

we co msder two-dimensional progressive gravity waves propagating at the interface

between two unbounded fluide of different densities P1  and P2 where p1  is the

density of the lover fluid. or 2 - 0 the problem reduces to that of the classical

Stokes' wavee. Stokes proposed that thee waves reach their limiting configuration when

the maximum velocity In the borisontal direction equals the phase speed of the wave. In a

frame of reference moving with the wave, the velocity at the crest is then equal to zero

and the free surface makes a 1200 angle with itself. stokes' conjecture has been

ccnfirmed in the work of m ick, Fraenkel, and Toland. For P2 
> 0, stokese' limiting

configuration is no longer poesible because such a stagnation point in the lower fluid

would result In an Infinite velocity In the vper fluid at that point.

Conjectures about the limiting configuration of interfacial waves were made by

o0lyer 2 and 8uffmn and rues 3 . olyer 2 perfomed extensive computations by using

Pade approKoimnts and found waves fo which the free surface profile Is vertical at aiea

point. in a similar problem with the fluids confined between horisontal walls it is shown

analytically by mick and Turner 4 that it the solitary waves do not become infinitely

broad In the horisamtal direction then vertical streamlinee muet appear. Based on her

calculations olyer 2 conjectured that a wave with a vertical profile at some point

constituted a limiting configuration. since the horisontal velocity at such a point would

equal the phase speed, uolyer's 2 criterion reduces to Stokes' criterion when P2 - 0.

saff sa and Tuen 3 pointed out that there are no dynmical or kineatical reasons to reject

Interfacial waves for which the horisontal velocity exceeds the phase velocity at come

Sponsored by the United States Ary under Contract No. DAMG2-80-C-0041 and the National
Science Foundation under Gants No. MCS 8200406 and SC 8001960.
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point. The existence of such moves was subsequently demonstrated numerically by Miron

and Saffm .5 o For these waves portions of the heavier fluid lie above lighter fluid and

for this reason Uiron and Saffman5 called them "overhangingm waves (cf figure 3c).

The computations of Meiron and Saffman 5 have thus shown that the appearance of a

vertical tangent on the interface does not correspond to a limiting configuration.

Saffman and Yuen 3 proposed that the overhanging waves continue to exist until the

interface intersects itself. However, the calculations of Neiron and Uaffmam were

stopped well before any such limiting configuration and thus do not confirm the conjecture

of Saffman and Yuen3 .

In the present paper we compute interfacial waves by using Vanden-Broock's 6 scheme

(hereafter referred to as V-B). The problem is first formulated as an integro-

differential set of equations. These equations are then reduced to a set of algebraic

equations through discretixation and the resulting equations solved by Newton's method.

Our results confirm the existence of overhanging waves as computed by Mairon and

Saffman 5 . Moreover, our scheme enabled us to extend their calculations. Continuing along

the branch of solutions we compute, we find that there is a return from the overhanging

configuration to one in which the fluid interface is a single-valued function of the

horizontal variable. We believe that further progress along the branch will produce

steepening of the streamline and development of a second overhanging wave. Accompanying

this oscillation in shape is an oscillation in speed and amplitude as clearly shown in

rig. 2. We conjecture that an alternation betveen nonoverhanging and overhanging waves

continues indefinitely as one proceeds along the solution branch. Such oscillatory

behavior has been exhibited in the analytical work of Longuet-Higgins and Fox7 on the

surface wave problem.
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2. 10iltio

Let us consider waves at the interface between two fluids of infinite extent having

densities P1  and P2 1 where p, is the density of the lover fluid. Assume a wave of

wavelength A propagates with phase velocity c under the influence of gravity g. The

variables are made dimensionless by taking A as the unit length and c as the unit

velocity. We choose a Cartesian frame of reference in which the flow is steady. The x-

axis is parallel to the velocity at an infinite distance from the interface and the y-axis

is directed vertically upward so that gravity acts in the negative y direction. It is

as%=" that the Interface is symmmetric with respect to the y axis.

Let #, and 42 be potential functions and let #1 and #2 be streas functions in

the lower and upper fluids respectively. Without loss of generality we choose

41 - $2 - 0 at a crest and #1 - #2 - 0 at the interface. The wave speed parameter,

the density parmter, and the steepness are defined by the relations

" - (1)
P2

0 L2 (2)
P1

a -yO) - y(3)

by choosing an origin for y so that the difference In the total Bernoulli head from the
2

lower fluids to the upper is (P2 " P1 ) - , the condition that the pressure be continuous

at the interface is expresed by

2 - 2) + (I P)y - (1 - p) (4)

Here q a and q2 are the magnitudes of the dimensionless velocities where 1" 0 and

0 0. Note that the choice of the origin for y is such that in an undisturbed fluid

the interface is at y - 0.

Now consider x and y as functions of #1 and *2 in the lower fluid and as

functions of *2 and i3 in the upper fluid. This provides two different parametric

-3-
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representations for the interface; namely, X(#,t0-), y(#1,0-) and xl# 21 0+), y(# 2 ,0+)

where 0- and 0+ indicate that the second variable has been allowed to approch zero

from below and above, respectively. We use the notation x,(#l), y 1 (# 1 ) and

x2 (#2 ), y2 ( 2 ), respectively, for theme boundary values. In the present context the

Hlbert transform provides the integral relations

__i/ 1- [2tdx 1

#1 -, -o cot W(#~ + #I)d;(5)0 d#1

and

dx2  2 dY2 t t- - 1 i. -. (cot w(*: - 5 ) - cot w($: + 5:]2 6

d*2  0 d#2

(cf V-2 6 ).

In general, #1 * #2 for two points in contact on the interface. To relate the

values of the potentials we define the funption

*1 - 9(#2 ) 
(7)

by the *contact relations"

x20 2 - x1(g(#2 )), y2 (42) - yl(g(#2)) (8)

and normalize g by requiring g(O) - 0. In the paper V-9 the bamic equations were

written using #, an the independent variable and a change of variables was used to have

mesh points equally spaced in #2' thereby concentrating points where the velocity in the

upper fluid changes rapidly. Here the same end is acccmplished by using *2 as the basic

independent variable. By differentiating the relations in (8) one can rewrite equation

(4) as

d [( ) 22+ dy 2 2-1
(-.. )2 _ (1 -- (-y (5 ) 2 .I (2 4xd- 2 222 ,(2

and equation (5) an

43C 2/ 2  ~2 "(---'l - - f --;a2 {cot [() - g(#)] - cot w [g(#) g(5)]4 (10)
d#2  d#2  0 d#2 2 2

-4-
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The problem can now be formilatad as followes fix two of the three parameters

v, I, and as then find functions x 2($2)1 y 2 (4 2 ), and g(4 2 ) defined for

2 9 to, . and a value for the remaining parameter so that (6), (9). and (10) are

simaltaneously satisfied. We solve the problem numerically. The relations (6), (9) and

(10) are replaced by algebraic equations to be satisfied at discrete, equally spaced

values of the variable 42 and the resulting algebraic equations are solved using

Newton's method. For more details regarding the numerical procedure see V-B. In that

paper p and a were given and U was found as part of the solution. To obtain the

result& presented here we used the scheme from V-9 as well as a scheme with the additional

option of fixing p and V and finding s as part of the solution.
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3. Numerical results

The scheme outlined in the previous section was used in V-B to compute interfacial

waves for p - 0.1 with N ( 25, where N denotes the number of mesh points between

2 " 0 and 2 -1/2. As can be seen from table 1, the results in V-B
6 
agree with those

of Holyer
2 . 

Saffman and Yuen
3 
repeated the calculations by using a numerical scheme based

on series truncation and table I shows agreement to five decimal places with the results

of Holyer
2 
and V-B

6 
providing a valuable check on all three procedures.

a Holyer Saffman & Yuen Vanden-Broeck N - 30 N - 60

6 (N - 25)
2. .880628 .880626 .880624 .880625 .880626

.8 .930496 .930484 .930484 .930484 .930484
25

Table 1 . Selected values of the speed parameter U as a function of steepness

s for p = 0.1 from Saffman and.yuen3 , Vanden-Broeck6 , and present

calculations. Saffman and Yuen
3 use H - 2s and [(I + p)p/(l - p)] 1/2

for steepness and speed, respectively.

In V-B solutions were obtained starting from small amplitude waves and continuing up

to a wave with a profile which is almost vertical at some distance from the crest (cf.

V-B, figure 1). Overhanging waves were not obtained in V-B due to the use of relatively

few mesh points. The computations from V-B
6 

are continued in the present work, wherein

more mesh points are used (N - 30, 45, 60) and continuation along a branch of solutions is

achieved by switching between P and s for parameterization. The convergence with

increasing values of N can be seen from the selected valves in table 1.

Our results with N - 60 agree with those of Meiron and Saffman
5  

and confirm the

existence of overhanging waves. Moreover, our scheme enabled us to carry forward Meiron

and Saffman's5 calculations. Fig. 1 shows the solution pairs (s,P) for p taking the

-6-
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values 0.1, 0.5. and 0.7. The broken line (in Fig. 2) corresponds to tie results obtained

by Heiron and Saffman 5 for p - 0.1 while the solid curve @hows our extension of their

results. Fig. 2, for 0 - 0.1, shows in some detail the oscillation referred to in the

introduction and will be discussed more fully in the following paragraphs.

Apart from the shift in the solution set with changing p, which can be seen in Fig.

1, the characteristics of the waves at various points along each solution branch were

substantially unaltered by changes in p. T envision the variation in wave

characteristics for a fixed p it is useful to envision moving on a solution branch using

arclangth as a parameter. We describe the behavior for the case p = 0 .1 which appears

typical and for which we have the most extensive data.

Starting with an infinitesimal steepness a and a value of I 0 -) . .818(1 + p)

progression along the branch initially produces an increase in both s and p (of figure

1, 0 - 0.1) a typical wave profile along this section is shown in figure 3a, the letter

"A corresponding to the point ae" in figure 2. The increase in a and p on this first

section is accompanied by an increase in the maximum slope of the interface up to the

point Obw at which the interface has a vertical tangent. e corresponding wave is shown

in figure 3b. Continuing past "b" one reaches a maximum for s and shortly thereafter a %

maximum for i. Past point ObO and up to the point "o" the wave profile is no longer a %

graph over x, but is "overhanging" as pictured in figure 3c corresponding to point ""

where there appears to be the greatest overhang. At point Od" there is a slight overhang

and at point se it appears to have disappeared so that the profile at e" resembles that

at Obo. In progressing past point "e" one sees further evidence of oscillation in a and

P. The computed profiles past *e" had no overhang and resembled the wave in figure 3a.

Pest the last point shown in figure 2 the computations became unreliable and were

discontinued.

-7-
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Conclusion

The results of Longuet-Uiggins and lox7 show that the speed of surface waves

(corresponding to p - 0) oscillates infinitely often so the wave of greatest height is

approached. Her* we have given numerical evidence that a similar oscillation occurs for

.nterfacial waves with density ratio P > 0. Whereas the steepness did not oscillate in

tbM calculations of Longuet-Higgins and Fox 7 we find evidence of oscillation in both the

speed and steepness parneters in the case that p > 0.* The accompanying profiles of waves

which go from nonoverhanging to overhanging and thence back to the nonoverhanging

configuration lead us to conjecture that the limiting behavior is characterized by

infinitely many oscillations in all of the characteristics of the waves.
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P 0.1

1.20

0.9-

08

0.7-

0.6-

5 -p 
* 0 .

0.1

0.1 0.2 0.3 0.4 s

Figure 1. Values of the speed parameter pi versus the steepness s
for p -0.1, 0.5 and 0.7.
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MBSTMACT (cont.)

20. limited (i.e. that solutions exist until the interface intersects
itself). I t is proposed that along a solution branch starting with 0
sinusoidal waves of small amplitude, one reaches solutions with
vertical streamlines and then overhanging waves. Continuing on this
branch one returns to nonoverhanging waves and thence hack toward a
wave with vertical streamlines. It is suggested that this succession
of patterns and accompanying oscillation in wave characteristics is
repeated indefinitely. Graphs of the results awe included.
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